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Abstract The problem of thermo-elastic stress analysis in multi-layered nonhomogeneous beams is considered.
The proposed analytical approach based on the multi-layered beam theory permits to take into account an arbitrary
distribution of the Young’s modulus, of the thermal-expansion coefficient, and of the temperature variation along
the beam depth. The effect of shear deformability of the interfaces is also carefully analyzed. Useful closed-form
solutions for the normal stresses in the layers and for the interface tangential stresses are provided in the case
of nonhomogeneous bi- and tri-layered beams. The obtained results show the effectiveness of using functionally
graded materials to relieve stress-concentrations due to the thermo-elastic mismatch typical of laminated beams
with homogeneous layers.

Keywords Analytical approach · Functionally graded materials · Multi-layered beams · Thermo-elasticity ·
Thermo-elastic mismatch

1 Introduction

The analysis of thermo-elastic stresses in composite beams with homogeneous layers can be traced back to the
pioneering work of Timoshenko [1]. On the basis of an elementary beam theory, he determined the normal stresses
in the layers, assuming that these stresses remain unchanged along the longitudinal beam axis. As regards the
interfacial stresses, it was just mentioned that they are of local type and concentrate near the strip ends at a distance
comparable with the strip thicknesses. After that, various simplified approaches to the problem in question were
suggested in the last decades, most in connection with the needs of the micro-electronics technology. Suhir [2,3]
extended the Timoshenko solution by considering deformable interfaces. Introducing both the longitudinal and the
transverse interfacial compliances, he evaluated the magnitude and distribution of the shearing and normal (peeling)
stresses along the interface of bi-metal thermostats.

More recently, the Suhir solution was improved in [4], where a correction to the peeling stresses was proposed
in order to satisfy the translation equilibrium in the direction normal to the layers. The discrepancies between the
Suhir solution and the finite-element results were also analyzed in [5], where further corrections were proposed.
An extension of this approach to electronic assemblies composed of three layers was proposed in [6], although the
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thickness of the intermediate layer, i.e., the adhesive one, was considered much smaller than those of the adjacent
layers. A general theory for the analysis of interfacial stresses in multi-layered homogeneous beams was recently
discussed in [7,8], although the applications regarded electronic packaging with three layers only.

Due to the recent advances in materials science and technology, it is important to note that the correspond-
ing problem in nonhomogeneous beams has received only minor attention as compared to its homogeneous
counterpart. The production of functionally graded materials (FGM) has now made possible the realization of
nonhomogeneous layers. Such materials consist of two phases of synthesized materials designed in such a way
that the volume fractions of the constituents vary continuously along the layer depth to give a predetermined
composition profile (see e.g. [9–18] for a detailed overview). The potentials of these new material microstruc-
tures are still under investigation by the scientific community. From a historical point of view, the FGM con-
cept was proposed in 1984 as a way of preparing super heat-resistant materials for the spacecraft industry.
Since the structural components of spacecrafts are exposed to high heat load, the material has to withstand
severe thermo-mechanical loading. As a technical solution, a FGM was produced by using heat-resistant ceram-
ics on the high-temperature side and tough metals with high thermal conductivity on the low-temperature side.
The gradient composition at the interface can effectively relax the thermal-stress concentrations caused by the
thermo-elastic mismatch [19].

The problem of heat conduction in nonhomogeneous materials was mathematically addressed in [20,21], where
an improved expression for the heat-conduction equation was determined by considering temperature-dependent
mechanical parameters. Concerning the analysis of thermo-elastic stresses in FGMs, recent studies deal with the
behavior of thick plates with nonhomogeneous composition along their thickness [22]. The problem of thermal
loading in bi-layered and/or FGM beams was investigated in [23]. Special emphasis was given to the analysis of
the residual stress field induced by a hot bonding. The important problems of delamination, fatigue, and the related
size effects were also addressed.

In this paper we propose a generalization of the analytical approach recently developed in [23] for the thermo-
elastic stress analysis of multi-layered and/or FGM beams. With respect to the previous contributions, the proposed
analytical approach based on the multi-layered beam theory permits to deal with a generic number of layers
with an arbitrary grading on the Young’s modulus and on the thermal-expansion coefficient. Moreover, a generic
temperature distribution along the beam depth can be taken into account. Concerning the interfaces between two
adjacent layers, two hypotheses are carefully examined: rigid interfaces and shear-deformable interfaces. The derived
closed-form solutions are implemented in a code written in MATLAB©, which permits to automatically perform
a thermo-elastic stress analysis of nonhomogeneous beams. This approach provides an easy-to-use estimation
method for the interfacial stresses and presents several advantages with respect to the finite element approach. In
fact, the application of the finite element method to functionally graded materials requires a special treatment of
the mechanical properties variation [24]. This can be achieved today by using numerical techniques that are mainly
restricted to research programmes, rather than implemented in commercial finite element software.

Numerical examples regarding bi- and tri-layered beams with nonhomogeneous properties are proposed. The
obtained results demonstrate the effectiveness of FGMs in reducing the dangerous effects caused by the thermo-
elastic mismatch at the interfaces.

2 Mathematical formulation

For the sake of generality, let us consider a composite beam consisting in n layers bonded together and sub-
jected to a temperature excursion from a reference temperature, �T (y) (see Fig. 1). In our formulation, the index
i = 1, 2, . . . , n refers to the ith layer, hi represents its thickness, whereas the width t is assumed to be constant
throughout the whole beam depth. We set the origin (y = 0) of the coordinate system y at the extrados of the
composite beam, i.e., at its upper surface.

The geometry of the beam and the thermal loading are symmetric with respect to the y-axis. In this stage, we
admit an arbitrary dependence of the thermal conductivity and of the resulting �T along the y-coordinate, since
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Fig. 1 Scheme of the multi-layered nonhomogeneous beam analyzed in this study

the nonhomogeneous composition can affect not only the distribution of the elastic properties, but also the thermal
conductivity entering the heat-conduction equation [20,21]. An arbitrary dependence of the Young’s modulus,
Ei(y), and of the thermal-expansion coefficient, αi(y), on the y-coordinate is also considered.

Concerning the interfaces between two adjacent layers, two hypotheses are examined in the sequel: rigid interfaces
and shear-deformable interfaces. In the former case, relative longitudinal displacements are not allowed at the
interface and the normal stresses within the layers (along the longitudinal z-coordinate) are found to be the same in
each transversal cross-section. The axial force supported by each layer is also independent of z and the tangential
stresses are equal to zero along the interface, except at z = ±l where they tend to infinity. In the latter configuration,
the interfaces are assumed to be shear-deformable. This property is mathematically modeled by introducing a
longitudinal interfacial compliance which describes the tangential behavior of the interface. In this case, the axial
force of each layer is found to be dependent on the z-coordinate. The tangential stresses along the interfaces are
different from zero near the free edges (z = ±l) where stress-concentrations are expected.

2.1 Rigid interfaces

The analysis of thermo-elastic stresses in multi-layered nonhomogeneous beams with rigid interfaces can be per-
formed under the Euler–Bernoulli hypothesis of conservation of plane sections [20,25,26]. This implies that a
generic plane section, which is perpendicular to the longitudinal axis of the beam before loading, still remains plane
and perpendicular to this axis after deformation. Longitudinal fibers on the convex side are extended, whereas the
fibers on the concave side are shortened. Clearly, there exists a plane where the fibers are not subjected to any elon-
gation. This plane is referred to as the neutral plane and the intersection between this plane and any cross-section
defines the neutral axis (see e.g. [25,26]).

As a consequence of this hypothesis on the beam deformation, the longitudinal strain, εz, is a linear function of
the y-coordinate and the longitudinal displacements are continuous along the beam depth. The longitudinal strain
at an arbitrary position y is given by:

εz,i = αi�Ti + σz,i

Ei

= ε0 + χy, (1)

where the parameters ε0 and χ denote, respectively, the longitudinal strain and the beam curvature evaluated in
correspondence of y = 0. Solving this equation for σz,i , we obtain:

σz,i = −αiEi�Ti + ε0Ei + χEi y. (2)

Therefore, the problem is reduced to finding ε0 and χ for a given beam geometry and material distribution. To
this end, we remark that the beam is completely free and exclusively subjected to a temperature variation from a
reference temperature. Since external forces do not act on the layers, we can determine ε0 and χ from the conditions
of vanishing axial force and bending moment in a generic cross-section:
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n∑

i=1

∫ y
(2)
i

y
(1)
i

σz,i t dy = 0,

n∑

i=1

∫ y
(2)
i

y
(1)
i

σz,i t y dy = 0, (3a,b)

where y
(1)
i and y

(2)
i denote, respectively, the upper and the lower surfaces of the ith layer, their difference being

equal to the layer thickness, hi = y
(2)
i − y

(1)
i .

Introducing Eq. (2) into Eq. (3), we obtain the following equations:

ε0

n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei dy + χ

n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei y dy =
n∑

i=1

∫ y
(2)
i

y
(1)
i

αi Ei �Ti dy, (4a)

ε0

n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei y dy + χ

n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei y2 dy =
n∑

i=1

∫ y
(2)
i

y
(1)
i

αi Ei �Ti y dy. (4b)

This equation set can be written in the following matrix form:
[

M11 M12

M21 M22

] {
ε0

χ

}
=

{
V1

V2

}
, (5)

where the matrix and vector coefficients are given by:

M11 =
n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei dy, M12 = M21 =
n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei y dy, M22 =
n∑

i=1

∫ y
(2)
i

y
(1)
i

Ei y2 dy, (6a,b,c)

V1 =
n∑

i=1

∫ y
(2)
i

y
(1)
i

αi Ei �Ti dy, V2 =
n∑

i=1

∫ y
(2)
i

y
(1)
i

αi Ei �Ti y dy. (6d,e)

It is important to note that the matrix coefficients Mij depend on the grading of the elastic moduli and on the
layers’ arrangement. On the other hand, the vector coefficients Vi depend not only on the grading of the elastic
moduli, but also on the grading of the thermal-expansion coefficients.

Focusing our attention on the case of a uniform temperature variation, i.e., �Ti(y) = �T , and a linear grading
of the Young’s moduli and of the thermal-expansion coefficients, the integrals in Eq. (6) can be performed in
closed-form and we have:

M11 =
n∑

i=1

Ei hi, (7a)

M12 = M21 =
n∑

i=1

1

2

(
E

(1)
i hi − �Ei
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k=1

hk

) (
2

i−1∑

k=1

hk + hi

)

+�Ei

3

⎡

⎣3

(
i−1∑

k=1

hk

)2

+ h2
i + 3hi

i−1∑

k=1

hk

⎤

⎦ (7b)
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n∑

i=1

1

3

(
E

(1)
i hi − �Ei

i−1∑

k=1

hk

) ⎡

⎣3

(
i−1∑

k=1

hk

)2

+ h2
i + 3hi

i−1∑

k=1

hk

⎤

⎦

+�Ei

4

(
hi + 2
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k=1

hk
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k=1

hk

)2
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hk

⎤

⎦ , (7c)

V1 = �T

n∑

i=1

⎡

⎢⎣E
(1)
i α

(1)
i hi − E

(1)
i �αi

i−1∑

k=1

hk − �Eiα
(1)
i

i−1∑

k=1

hk + �Ei�αi

(∑i−1
k=1 hk

)2

hi

⎤

⎥⎦
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⎦ , (7e)

where Ei denotes the average Young’s modulus in the ith layer. The Young’s moduli, Ei , and the thermal-expansion
coefficients, αi , have the following expressions:

Ei(y) = E
(1)
i + 1

hi

(
y −

i−1∑

k=1

hk

)
�Ei, αi(y) = α

(1)
i + 1

hi

(
y −

i−1∑

k=1

hk

)
�αi, (8a,b)

where �Ei = E
(2)
i − E

(1)
i and �αi = α

(2)
i − α

(1)
i denote, respectively, the Young’s modulus and the thermal-

expansion coefficient variations within each layer from the upper interface, with superscript (1), to the lower one,
with superscript (2). Note that the summations in Eq. (8) are different from zero if and only if the index i is greater
than unity.

It is important to remark that the normal stresses computed according to this formulation are independent of the
z-coordinate. As a consequence, the axial force supported by each layer, Ni , is also constant along the z-coordinate
and the tangential stresses along the interfaces are equal to zero. At the emerging points of the interface with the
free boundary (z = ±l), the tangential stresses tend theoretically to infinity and the order of the stress singularity
has to be determined according to an asymptotic analysis (see e.g. the mathematical methods proposed in [27,28]).

2.2 Shear-deformable interfaces

In the present section we analyze the case of shear-deformable interfaces, where relative displacements are admitted
from one layer to another. Also in this case, we consider a geometric symmetry with respect to the y-axis and a
temperature variation, �Ti(y), dependent only on the y-coordinate.

Under these conditions, relative displacements build up along the interfaces and the axial forces in the layers,
Ni , which represent the integral of the normal stresses along the layer cross-section, become functions of the
z-coordinate. It is important to remark that, owing to the symmetry of the problem, the axial forces and the normal
stresses computed at z = 0 correspond to those computed in the case of rigid interfaces. This is due to the vanishing
relative displacements between the layers in this cross-section.

The axial equilibrium along the longitudinal coordinate provides the tangential stresses along the interfaces
(i = 2, . . . , n − 1):

τ1,2 = −1

t

dN1(z)

dz
, τi,i+1 − τi−1,i = −1

t

dNi(z)

dz
, τn−1,n = 1

t

dNn(z)

dz
, (9a,b,c)
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where the indices indicate the numbers of the adjacent layers sharing a common interface. Equation (9) can be
suitably rewritten in matrix form:

[A]
n × (n − 1)

{τ }
(n − 1) × 1

= − 1
t

d
dz

{N}
n × 1

, (10)

where the vectors {τ } and {N} collect, respectively, the n − 1 tangential stresses at the interfaces and the n axial
loads supported by the layers. The matrix [A] is the following sparse rectangular matrix:

[A] =

⎡

⎢⎢⎢⎢⎢⎣

1
−1 1

. . .
. . .

−1 1
−1

⎤

⎥⎥⎥⎥⎥⎦
. (11)

Due to the axial equilibrium, the sum of the axial loads in a generic cross-section z has to be set equal to zero:
n∑

k=1

Nk = 0. (12)

The longitudinal displacements w of two adjacent layers i and i +1 at the ith common interface can be computed
as follows (see also [23]), i = 1, . . . , n − 1:

w
(2)
i = k

(2)
i

∫ z

0

Ni(ξ)

E
(2)
i Ai

dξ + α
(2)
i �T

(2)
i z, (13a)

w
(1)
i+1 = k

(1)
i+1

∫ z

0

Ni+1(ξ)

E
(1)
i+1Ai+1

dξ + α
(1)
i+1�T

(1)
i+1 z, (13b)

where Ai and Ai+1 denote, respectively, the cross-sectional areas of these layers, and the coefficients k
(j)
i represent

the ratio between the normal stresses evaluated at the interface with respect to the mean value in each layer computed
at z = 0, i.e., k

(j)
i = σz,i(z = 0, y = yi)Ai/Ni(z = 0). These coefficients can be easily determined from the

diagram of the normal stress vs. y-coordinate obtained under the assumption of rigid interfaces (see the previous
section). The equations (13) can also be rearranged in matrix form:

{w}
2(n − 1) × 1

= [B]
2(n − 1) × n

∫ z

0

{N}dξ

n × 1

+ [C]
2(n − 1) × 2(n − 1)

{�T }z,
2(n − 1) × 1

(14)

where the vectors {w} and {�T } collect, respectively, the longitudinal displacements and the temperature variations
evaluated at the interfaces. Matrices [B] and [C] are sparse matrices given by:

[B] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
(2)
1

E
(2)
1 A1

k
(1)
2

E
(1)
2 A2

k
(2)
2

E
(2)
2 A2

· · ·
· · ·

k
(1)
n−1

E
(1)
n−1An−1

k
(2)
n−1

E
(2)
n−1An−1

k
(1)
n

E
(1)
n An

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (15)
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[C] =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(2)
1

. . .

α
(1)
i

α
(2)
i

. . .

α
(1)
n

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (16)

Note that the rotational equilibrium is not imposed in this formulation. An exact treatment of the problem would
require the use of coefficients k

(j)
i dependent on the longitudinal coordinate. In any case, it is important to note that

the rotational equilibrium is a priori satisfied in the case of bi-layered beams. In this instance, in fact, the analysis
of the free-body diagram of each layer imposes that the corresponding axial force must be applied at the interface
level for any value of the z-coordinate. As a consequence of this condition, the distribution of the normal stresses in
the layers, σz(y), is simply rescaled by a factor of proportionality with respect to that computed at z = 0. Therefore,
the coefficients k

(j)
i turn out to be independent of the longitudinal coordinate and the solution is exact. When more

than two layers are taken into account, the intermediate layers are not in equilibrium. However, as will be shown
in the numerical examples, the resulting approximation can be considered acceptable from an engineering point of
view.

The compatibility equation can be written by observing that the relative displacement at the interface between
two adjacent layers corresponds to the shearing deformation of the interface, which is characterized by a given
compliance. This compliance is usually experimentally related to the thickness of the adhesive, ha , and to its shear
modulus, G. In formulae we have:

w
(1)
i+1(z) − w

(2)
i (z) = haγ (z) = ha

τi,i+1

G
, i = 1, . . . , n − 1. (17)

In matrix form we have the following expression:

{τ }
(n − 1) × 1

= G
ha

[D]
(n − 1) × 2(n − 1)

{w},
2(n − 1) × 1

(18)

where the matrix [D] is given by:

[D] =

⎡

⎢⎢⎢⎢⎢⎣

−1 1
−1 1

. . .
. . .

−1 1
−1 1

⎤

⎥⎥⎥⎥⎥⎦
. (19)

It is important to notice that, when the thickness of the adhesive vanishes, the model predicts unbounded tangential
stresses, as also observed in the case of perfectly bonded zero-thickness interfaces [27].

Introducing Eqs. (18) and (14) into Eq. (10), it is possible to obtain an equation set consisting in n integro-
differential equations in n unknowns, which are represented by the values of the axial forces supported by each
layer, Ni :
d

dz
{N} + K[A][D][B]

∫ z

0
{N} dξ + K[A][D][C] {�T } z = {0} , (20)

where the parameter K denotes Gt/ha . To solve the problem, the equation set (20) has to be differentiated with
respect to z in order to obtain pure ODEs:

d2

dz2 {N} + K[A][D][B]{N} + K[A][D][C]{�T } = {0}. (21)

Finally, after some manipulation and considering the equilibrium equation (12), it is possible to express the Ni

unknowns in terms of the axial force of a given layer, say Nj . This procedure yields a single ODE in the unknown
Nj which has to be integrated by considering suitable boundary conditions.
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To fix ideas, let us consider as a representative example the case of two layers, which was also analyzed in [23].
In this case, we have only one compatibility equation:

k
(1)
2

∫ z

0

N2(ξ)

E
(1)
2 A2

dξ − k
(2)
1

∫ z

0

N1(ξ)

E
(2)
1 A1

dξ + α
(1)
2 �T

(1)
2 z − α

(2)
1 �T

(2)
1 z = ha

G
τ1,2. (22)

Considering the longitudinal equilibrium of the beam (N2 = −N1 = N) and the equilibrium equation (9a), we
finally obtain a single integro-differential equation in the unknown N :

k
(2)
1

∫ z

0

N(ξ)

E
(2)
1 A1

dξ + k
(1)
2

∫ z

0

N(ξ)

E
(1)
2 A2

dξ + α
(1)
2 �T

(1)
2 z − α

(2)
1 �T

(2)
1 z = 1

K

dN(z)

dz
. (23)

Differentiation of this equation with respect to z provides the following second-order ODE:

d2N

dz2 + β2∗ N + γ∗ = 0, (24)

where

β2∗ = −K

(
k
(2)
1

E
(2)
1 A1

+ k
(1)
2

E
(1)
2 A2

)
, γ∗ = K

(
α

(1)
2 �T

(1)
2 − α

(2)
1 �T

(2)
1

)
.

The integral of this ODE is given by:

N(z) = C1eβ∗z + C2e−β∗z − γ∗
β2∗

, (25)

where the constants C1 and C2 have to be determined by imposing the boundary conditions. In this problem, they
are represented by the symmetry condition in z = 0 and by the fact that axial forces have to be equal to zero at
z = ±l:

dN

dz
(z = 0) = 0, N(z = ±l) = 0. (26a,b)

Therefore, the constants can be determined and are equal to:

C1 = C2 = γ∗
2β2∗ cosh(β∗l)

. (27)

In the case of three layers, the governing equations become more complicated. Since we have two interfaces, the
compatibility equations are (N3 = −N1 − N2):

k
(2)
1

∫ z

0

N1

E
(2)
1 A1

dξ − k
(1)
2

∫ z

0

N2

E
(1)
2 A2

dξ + α
(2)
1 �T

(2)
1 z − α

(1)
2 �T

(1)
2 z = 1

K

dN1

dz
(28a)

k
(1)
3

∫ z

0

N1 + N2

E
(1)
3 A3

dξ + k
(2)
2

∫ z

0

N2

E
(2)
2 A2

dξ + α
(2)
2 �T

(2)
2 z − α

(1)
3 �T

(1)
3 z = 1

K

d(N1 + N2)

dz
(28b)

Differentiation of Eqs. (28) with respect to z permits to obtain two second-order ODE in the unknowns N1 and N2.
Taking the difference between the first and the second equation, it is possible to express N1 as a function of N2:

N1 = 1

Kφ

d2N2

dz2 − 1

φ

(
k
(1)
2

E
(1)
2 A2

+ k
(1)
3

E
(1)
3 A3

+ k
(2)
2

E
(2)
2 A2

)
N2

− 1

φ

(
α

(1)
2 �T

(1)
2 − α

(2)
1 �T

(2)
1 + α

(2)
2 �T

(2)
2 − α

(1)
3 �T

(1)
3

)
, (29)

where the symbol φ denotes:

φ = k
(1)
3

E
(1)
3 A3

− k
(2)
1

E
(2)
1 A1

. (30)
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Finally, Eq. (29) can be introduced into Eq. (28a) to determine a fourth-order ODE in the unknown N2:

NIV
2 + βNII

2 + δN2 + γ = 0, (31)

where the constant coefficients β, δ and γ are:

β = −K

(
k
(1)
2

E
(1)
2 A2

+ k
(1)
3

E
(1)
3 A3

+ k
(2)
2

E
(2)
2 A2

+ k
(2)
1

E
(2)
1 A1

)
, (32a)

δ = K2

[
φ

(
k
(1)
2

E
(1)
2 A2

)
+ k

(2)
1

E
(2)
1 A1

(
k
(1)
2

E
(1)
2 A2

+ k
(1)
3

E
(1)
3 A3

+ k
(2)
2

E
(2)
2 A2

)]
, (32b)

γ = K2
[
φ

(
α

(1)
2 �T

(1)
2 − α

(2)
1 �T

(2)
1

)
+ k

(2)
1

E
(2)
1 A1

(
α

(1)
2 �T

(1)
2 − α

(2)
1 �T

(2)
1 + α

(2)
2 �T

(2)
2 − α

(1)
3 �T

(1)
3

)]
.

(32c)

The solution to this ODE is given by:

N2(z) = C1eλ1z + C2eλ2z + C3eλ3z + C4eλ4z − γ

δ
, (33)

where the exponents λk (k = 1, . . . , 4) are:

λ1,2 =
√

−β ± √
β2 − 4δ

2
, λ3,4 = −

√
−β ± √

β2 − 4δ

2
. (34)

The constants Ck (k = 1, . . . , 4) have to be determined by imposing the boundary conditions. Also in this case, they
are represented by the symmetry condition at z = 0 and by the fact that axial forces are equal to zero at z = ±l:

dN1

dz
(z = 0) = 0,

dN2

dz
(z = 0) = 0, N1(z = ±l) = 0, N2(z = ±l) = 0. (35a,b,c,d)

Therefore, these boundary conditions involve not only N2 and its first derivative, as in the previous case, but also
its second and third derivatives due to the boundary conditions imposed on the function N1; see Eq. (29). When the
functions Ni(z) are determined, the tangential stresses can be computed according to Eq. (9).

This procedure, performed in detail for the problems consisting in two or three layers, can be repeated for multi-
layered beams with a higher number of layers. In general, we note that, for a multi-layered beam with n layers, the
order of the governing ODE that has to be solved becomes equal to 2(n−1), i.e., it is twice the number of interfaces.

3 Numerical examples

The determination of normal and tangential stresses according to the mathematical formulation presented in the
previous sections has been obtained using MATLAB. The realized code permits to perform a thermo-elastic stress
analysis of a nonhomogeneous beam with an arbitrary number of layers with piece-wise linearly variable Young’s
moduli and thermal-expansion coefficients. A generic temperature distribution can also be prescribed. Numerical
examples concerning bi-layered and tri-layered beams are shown in the sequel.

3.1 Bi-layered nonhomogeneous beams

Let us consider a bi-layered beam with constant elastic and thermal properties in each layer, but different from the
first layer to the second one (see Fig. 2a).

As an example, we consider a bi-layered beam composed of Tungsten (W) as the material (1) and a mixture of
Nickel and Steel (Ni–Fe) as the material (2). The geometrical parameters are: h1 = h2 = 1×10−3 m, l = 1×10−2 m
and t = 1 × 10−3 m. The beam is subjected to a uniform temperature excursion, �T = 500 K, and the mechanical
parameters are [29]: E1 = 400 GPa, α1 = 5.3 × 10−6/K, E2 = 255 GPa and α2 = 15.0 × 10−6/K.
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E1y
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∆T=constant

(a)

(b)

Fig. 2 Schemes of two-layered nonhomogeneous beams. (a) Homogeneous composition in each layer, (b) Linear grading solution

Under these conditions, the thermo-elastic analysis in the case of rigid interfaces shows that the beam is subjected
to both an axial deformation, ε0 = 1.3 × 10−3, and a curvature, χ = 3.59 m−1. The normal stress, σz, is shown
in Fig. 3 as a function of the y-coordinate. Due to the thermo-elastic mismatch between the two layers, the normal
stress is discontinuous in correspondence of the bi-material interface. It has to be noticed that, due to the axial
equilibrium, the axial force in the lower layer is the opposite of that in the upper layer, i.e., N2 = − N1 = N .
Moreover, the rotational equilibrium imposes that these axial forces are both applied at the interface level for any
value of the z-coordinate.

Tangential stresses along the interface can also be computed by considering a shear-deformable interface with
G ∼= (E1 + E2)/4 and ha = 1 × 10−4 m. Equation (25) provides the variation of the axial force N along the
beam span (see Fig. 4a). As can be readily seen, the axial force is nearly constant from the symmetry axis (z = 0),
up to z/l ∼= 0.9. Near the border, N tends rapidly to zero. As a consequence of this trend, the tangential stresses
computed according to Eq. (9a) are equal to zero when N is constant and present a sudden increase in their modulus
when z/l ∼= 1 (see Fig. 4b). Due to the finite interface thickness, the tangential stresses are always bounded along
the beam length.

In this case study, the use of a linear grading on the Young’s modulus and on the thermal-expansion coefficient can
be very effective. For instance, if we consider a linearly variable material composition ranging from pure Tungsten
at y = 0 to pure Ni–Fe at y = h, then we obtain a single-layer FGM beam with E

(1)
1 = 400 GPa, E

(2)
1 = 255 GPa,

α
(1)
1 = 5.3 × 10−6/K and α

(2)
1 = 15.0 × 10−6/K (see Fig. 2b).

A closed-form solution to the equation set (5) can be derived and we obtain ε0 = α
(1)
1 �T and χ = (�α1�T )/h.

As a result, introducing these values into Eq. (2), the normal stresses are found to be equal to zero. It is interesting
to note that this result is independent of the grading on the Young’s modulus, since the solution vector (ε0; χ)T

does not depend on the parameters E
(j)
1 .
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Fig. 3 Normal stresses
along the beam depth for a
bi-layered beam
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Fig. 4 Axial force in the upper layer and tangential stresses vs. longitudinal coordinate for a bi-layered beam. (a) Axial force,
(b) Tangential stresses

As a limit case, when α
(1)
1 = α

(2)
1 , and we have a grading on the Young’s modulus only, we obtain V1 = M11α1�T,

V2 = M12α1�T, χ = 0 and ε0 = α1�T , as for a classical homogeneous beam. Also in this case, both the normal
and the tangential stresses are equal to zero in the whole beam.

3.2 Tri-layered nonhomogeneous beams

As a representative example, let us consider a tri-layered beam with homogeneous layers. The first and the third lay-
ers are composed, respectively, of Tungsten and Ni–Fe, whereas the intermediate layer has an average composition
(see Fig. 5a). The thermo-elastic parameters are: E1 = 400 GPa, α1 = 5.3 × 10−6/K, E2 = (255 + 400)/2 GPa, α2 =
(5.3+15.0)×10−6/2, 1/K,E3 = 255 GPa andα3 = 15.0×10−6/K (see Fig. 5a). We consider a uniform temperature
excursion, �T = 500 K, and the following geometrical parameters: h1 = h2 = h3 =1 × 10−3 m, l = 1 × 10−2 m and
t = 1×10−3 m. This tri-layered solution is also compared with that obtained using a FGM composing the intermediate
layer to obtain a smooth transition from the upper to the lower material (see Fig. 5b).

The normal stresses computed according to the rigid-interface assumption are shown in Fig. 6 for these two
configurations. As can be readily seen, the use of a FGM permits to remove the discontinuities in the normal
stresses in correspondence of the interfaces. Moreover, the linear grading in the Young’s modulus and in the
thermal-expansion coefficient in the intermediate layer results in a quadratic variation of the normal stresses for
h1 ≤ y ≤ h1 + h2 (see Eq. (2)).

Another important difference between the two solutions regards the values of the axial force in each layer. For
the multi-layered solution with homogeneous properties, the axial forces Ni (i = 1, . . . , 3) are different in the
layers, provided that

∑3
k=1 Nk = 0 (see Fig. 6a). When the FGM solution is adopted (see Fig. 6b), the axial

forces are equal to zero in each layer. This observation is fully consistent with the predictions of the theoretical
model for shear-deformable interfaces. In fact, when the temperature excursion is the same in each layer and the
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Fig. 5 Schemes of tri-layered nonhomogeneous beams. (a) Homogeneous composition in each layer, (b) linear grading in the
intermediate layer
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Fig. 6 Normal stresses along the beam depth for a tri-layered beam. (a) Tri-layered beam, (b) tri-layered beam with a FGM interlayer

thermal-expansion coefficients are continuous along the interfaces, the constant γ in Eq. (31) is equal to zero. As a
result, the ODE (31) provides N2 = 0. The axial force N1 computed according to Eq. (29) becomes equal to zero
in its turn and, from the longitudinal equilibrium, we have also N3 = 0. As a consequence, the tangential forces
along the interfaces are equal to zero. Moreover, the rotational equilibrium is always satisfied, the normal-stress
distribution being the same for any value of the z-coordinate.

In the case of homogeneous layers, Eq. (33) with the boundary conditions (35) permit to determine the axial forces
in each layer as functions of the z-coordinate (see Fig. 7a). Finally, the tangential stresses along the two interfaces
can be computed according to Eq. (9) and are shown in Fig. 7b in the range 0.9 ≤ z/l ≤ 1.0. Due to the fact that
N3 is less than N1, the maximum tangential stress along the second interface is lower than that on the first interface.

In this case, as mentioned in the previous section, the rotational equilibrium of the intermediate layer is no longer
exactly satisfied. However, the error is a rapidly decreasing function of the thickness of the intermediate layer. A
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Fig. 7 Axial forces and tangential stresses vs. longitudinal coordinate for a tri-layered beam. (a) Axial forces, (b) tangential stresses
(0.9 ≤ z/l ≤ 1)

Fig. 8 Out-of-balance in
the rotational equilibrium as
a function of the
longitudinal coordinate
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measure of the out-of-balance in the equilibrium equation is simply given by the sum of the bending moments
supported by the layers,

∑3
i=1 Mi = �M . This quantity, nondimensionalized with respect to the bending moment

supported by the first layer, M1, is shown in Fig. 8 as a function of the longitudinal coordinate. Three configurations
are considered, each one characterized by a different value of the relative thickness of the intermediate layer
with respect to that of the first layer, h2/h1. In the simulations we have kept the following parameter constants:
h1 = h3, h = 0.003 m and h/l = 1/10. As can be readily seen, the out-of-balance in the equilibrium equation
becomes less than 3% of the bending moment supported by the first layer for h2/h1 � 3/4. This error can be
considered acceptable from an engineering point of view, since the thickness of the intermediate layer is usually
much smaller than those of the adjacent layers in practical applications.

4 Conclusion

In this paper, we have presented an analytical approach based on the multi-layered beam theory for the thermo-elastic
analysis of nonhomogeneous beams subjected to a generic temperature variation from a reference value along their
depths. The proposed analytical solutions constitute a step forward with respect to previous thermo-elastic studies
on nonhomogeneous beams. The proposed formulation, in fact, can deal with a generic number of layers and can
consider either rigid or shear-deformable interfaces.

According to this approach, some important numerical examples are provided for bi- and tri-layered beams. In
the former situation, a grading of the elastic modulus and of the thermal-expansion coefficient allows to relieve the
normal stresses along the beam. In the latter, the use of a FGM intermediate layer connecting two homogeneous
layers permits to relieve the interface tangential stresses.
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Another important application of this approach concerns the analysis of residual stresses that are generated
during the bonding process. In fact, from a theoretical point of view, the problem of residual stresses induced by
a hot bonding of n material components during the fabrication process can be considered equivalent, neglecting
the algebraic sign, to the problem of thermal stresses induced by a temperature increase in an already bonded
multi-layered structure [30]. As a consequence, the problem of residual stresses induced in the elements by a
temperature increase �T can be studied as a problem of thermal stresses due to a temperature decrease of the same
amount.
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